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Abstract. We present a generalized telecloning (GTC) protocol where the quantum channel is non-
optimally entangled and we study how the fidelity of the telecloned states depends on the entanglement of
the channel. We show that one can increase the fidelity of the telecloned states, achieving the optimal value
in some situations, by properly choosing the measurement basis at Alice’s, albeit turning the protocol to
a probabilistic one. We also show how one can convert the GTC protocol to the teleportation protocol via
proper unitary operations.

PACS. 03.67.Mn Entanglement production, characterization, and manipulation – 03.67.Hk Quantum
communication – 03.67.-a Quantum information

1 Introduction

Since the appearance of the quantum teleportation proto-
col [1] and its experimental demonstration [2,3], whereby
an arbitrary state describing a quantum system can be
transferred from one recipient (Alice) to another (Bob),
several new quantum communication protocols have ap-
peared. They allow the sharing of quantum states among
several recipients [4], the sharing of quantum secrets [5–7],
or the teleportation of an arbitrary quantum state to many
recipients, i.e. quantum telecloning [8]. The latter pro-
tocol does not violate the no-cloning theorem [9] since
the fidelity of the telecloned states with respect to the
original one are not perfect, and decreases with the num-
ber of copies. An optimal quantum telecloning protocol
has been presented in references [8,10] for two-level sys-
tems (qubits) and later on quantum telecloning has been
demonstrated experimentally for continuous variables sys-
tems [11,12].

These protocols are essential to many quantum in-
formation tasks which require a secure transmission of
quantum states. One example is quantum information net-
works [4,13], which are built of nodes in which quantum
states are created, manipulated, and stored. These nodes
are connected by multipartite entangled quantum chan-
nels and by properly using one or several of the aforemen-
tioned protocols one could avoid errors and eavesdropping
during the transmission of a state between nodes [4,14].

However, most treatments of these protocols assume
bipartite or multipartite maximally entangled channels,
whereas in realistic scenarios decoherence and noise en-
sure that that is not the case. One suggested solution is
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quantum distillation protocols [15], which allow us to ob-
tain a maximally entangled state from a large ensemble of
partially entangled states, although only asymptotically.
Another one is to dynamically control the decoherence of
the channel qubits [16,17].

In reference [18], inspired by reference [19], and in ref-
erence [20], we have generalized the teleportation [18] and
quantum state sharing [20] protocols to an arbitrary num-
ber of input qubits and shown that one can overcome the
fidelity decrease due to non-maximally entangled channels
on expense of transforming the protocols to probabilistic
ones. These generalized protocols give the parties free-
dom to allocate the channel’s resources to a continuous
distribution between the fidelity of the protocol and its
probability of success to achieve a given fidelity. Other in-
teresting approaches using pure non-maximally entangled
resources were presented in references [21–23]. In refer-
ence [21] it was shown how to directly teleport a qubit
using non-maximally entangled pure channels. Contrary
to reference [19], in reference [21] Bob needs to imple-
ment a unitary operation on his qubit and an ancillary
plus a measurement on the ancillary in order to finish the
protocol. In reference [22] it was discussed how to imple-
ment entanglement swapping using non-maximally pure
entangled states and in reference [23] how to construct an
oblivious remote state preparation procedure using non-
maximally entangled resources.

In this contribution we present the generalized tele-
cloning protocol (GTC), where we generalize the standard
quantum telecloning protocol to non-optimally entangled
multipartite channels (see Fig. 1). For a comprehensive re-
view of other interesting extensions of the telecloning pro-
tocol see reference [24]. By treating each qubit’s degraded
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Fig. 1. Alice performs a Bell measurement (BM) on the qubit
to be telecloned (X) and on the port qubit (P). She then tells
Bob and Charlie her measurement result (2 bits). The copies
C1 and C2 are then subjected to a proper unitary operation
(U). Note that waves represent the existence of pairwise en-
tanglement among the qubits and that the ancillary qubit (A)
is entangled with the copies at the end of the protocol.

contribution to the entanglement of the channel sepa-
rately, we show that one can overcome the resulting fi-
delity decrease by applying appropriate modifications to
the protocol. Our main results show that: (a) the port’s
qubit influence on the entanglement of the channel can
be overcome by changing the measurement basis; (b) the
ancillary qubit’s behavior has no effect on the telecloned
fidelity; (c) the copy qubits’ behavior has a non trivial
influence on the fidelity of the telecloned states and we
show the optimal strategy to maximize the efficiency of
the protocol; and (d) it is possible to convert the GTC to
the generalized teleportation protocol (GTP) if one allows
Alice to implement certain types of unitary operations on
the channel’s qubits.

2 General formalism

We focus our attention on the “1 → 2 quantum tele-
cloning”, i.e. one original qubit and two copies. Let us
assume that Alice wishes to teleclone her state to Bob and
Charlie. The quantum channel used for the optimal tele-
cloning protocol [8,10] is composed of four qubits, namely
port qubit, ancillary qubit and two copy qubits. The port
and ancillary qubits are assumed to be with Alice, al-
though the ancillary is not required to be there [8]. One
copy qubit is with Bob while the other one is with Charlie
(Fig. 1).

The channel state is given by:

|ψ〉PAC =
1√
2

(|0〉P ⊗ |φ0〉AC + |1〉P ⊗ |φ1〉AC) , (1)

where

|φ0〉AC =
1∑

j=0

αj |{0, 1 − j}, {1, j}〉A

⊗ |{0, 2 − j}, {1, j}〉C , (2)

|φ1〉AC =
1∑

j=0

αj |{0, j}, {1, 1− j}〉A

⊗ |{0, j}, {1, 2− j}〉C , (3)

αj =
√

(2 − j)/3. (4)

Here the subscripts denote the port (P ), ancillary (A) and
copies (C: C1 with Bob and C2 with Charlie). The state
|{0,M − j}, {1, j}〉 represents the symmetric and normal-
ized state of M qubits in which M − j of them are in the
state |0〉 and j are in the orthogonal state |1〉 (see Ref. [8]).
For M = 2 we have explicitly,

|φ0〉AC =

√
2
3
|000〉AC +

√
1
6
|101〉AC +

√
1
6
|110〉AC ,

|φ1〉AC =

√
2
3
|111〉AC +

√
1
6
|001〉AC +

√
1
6
|010〉AC .

We analyze the influence of each qubit on the entangle-
ment of the channel by applying a qubit-specific ‘disen-
tanglement’ operator:

D̂i (α|0〉i|ψ0〉 + β|1〉i|ψ1〉) =
α|0〉i|ψ0〉 + niβ|1〉i|ψ1〉√|α|2 + |niβ|2

,

(5)
where ni can be complex and |α|2 + |β|2 = 1. For ex-
ample, when this operator is applied on a Bell state, e.g.
|Φ+〉 = 1/

√
2 (|00〉 + |11〉), it produces a non-maximally

entangled state, D̂1(|Φ+〉) = 1/
√

1 + |n2
1| (|00〉 + n1|11〉).

When it is applied to the second qubit of the W state,
|W 〉 = (1/

√
3)(|001〉 + |010〉 + |100〉), we get D̂2(|W 〉) =

1/
√

2 + |n2
2| (|001〉+ n2|010〉 + |100〉). In other words, the

application of D̂i on a state changes the ith qubit accord-
ing to the following map: |0〉i → |0〉i and |1〉i → ni|1〉i.
Note that the final state is obtained normalizing the state
obtained after we apply the map.

It is worth mentioning that we called the map de-
scribed in the previous paragraph a ‘disentanglement’ op-
erator because the state obtained after its application on
a given maximally entangled state does not have the same
amount of entanglement as before. We have a decrease on
the entanglement content of the original state. It is in this
sense that one should understand this terminology.

Applying this operator on each qubit in the telecloning
channel results in:

|ψ; {n}〉PAC = A
(
|0000〉+

nPnC1

2
|1010〉+

nAnC1

2
|0110〉

+
nPnC2

2
|1001〉+

nAnC2

2
|0101〉

+nPnAnC1nC2 |1111〉
)

PAC
, (6)
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where

A =
(
1 +

|nPnC1 |2
4

+
|nAnC1 |2

4
+

|nPnC2 |2
4

+
|nAnC2 |2

4

+|nPnAnC1nC2 |2
)−1/2

. (7)

Note that {n} = {nP , nA, nC1 , nC2} represents all the ‘dis-
entanglement’ parameters.

Before we proceed we want to show how the entangle-
ment of the state (6) depends on the values of nj , where
j = P,A,C1, and C2. This analysis is important since it
allows one to connect the efficiency of the protocol to the
entanglement of the channel. Furthermore, it also justifies
why we have called D̂i a ‘disentanglement’ operator.

In order to quantify the entanglement of the chan-
nel we employ the global entanglement E(1)

G proposed by
Meyer and Wallach [25] and fully discussed and general-
ized in [26],

E
(1)
G (|ψ; {n}〉PAC) = 2

⎛

⎝1 − 1
4

4∑

j=1

Tr(ρ2
j )

⎞

⎠ , (8)

where ρj is the reduced density matrix describing qubit j,
obtained tracing out all qubits of the channel but j. One
can show [26] that E(1)

G is the mean linear entropy of the
qubits belonging to the state (6) and that it is related to
the purity of the qubits. For our purposes, E(1)

G is a fairly
good multipartite entanglement quantifier [25,26].

The general expression for E(1)
G is too cumbersome and

not insightful. Therefore, we show here the most repre-
sentative cases for nj real. Whenever all but one of the
‘disentangling’ parameters are equal to one, or, in other
words, whenever we apply D̂i to only one of the channel’s
qubits we have,

E
(1)
G (|ψ;nj〉PAC) =

1 + 6n2
j + n4

j

2(1 + n2
j)2

, (9)

where j = P,A,C1, or C2. As depicted in Figure 3 we see
that the global entanglement is an increasing function of
nj . When we deal with two free parameters, i.e. ni and nj

different from one, we have two possibilities. For (ni, nj) =
(nA, nP ) = (n1, n2) we get,

E
(1)
G =

8n2
j + n4

j + n4
i (1 + 8n4

j) + n2
i (8 + 38n2

j + 8n4
j)

2(2 + n2
j + n2

i + 2n2
in

2
j)2

.

(10)
On the other hand, for (ni, nj) = (nA, n1) = (nA, n2) =
(nP , n1) = (nP , n2) we get

E
(1)
G =

2(4 + 5n2
i + n2

j(5 + (44 + 5n2
j)n

2
i + (5 + 4n2

j)n
4
i ))

(5 + n2
j + n2

i + 5n2
in

2
j)2

.

(11)
Both expressions, however, have a similar behavior. There-
fore, in Figure 2 we only plot equation (10). Note that,
again, the global entanglement is an increasing function
of ni and nj .

Fig. 2. (Color online) Global entanglement, as given by equa-
tion (10), as a function of (ni, nj) = (n1, n2) = (nA, nP ).

Let us now return to the telecloning protocol. Using
the channel given in equation (6) Alice wants to teleclone
an arbitrary state, |φ〉X = α|0〉X + β|1〉X , to Bob and
Charlie. The full initial state, with the qubit to teleclone,
is simply given by

|φ〉XPAC = |φ〉X ⊗ |ψ; {n}〉PAC , (12)

and the protocol works as follows.
Alice performs a modified Bell measurement [18,20],

i.e. she projects her original (X) and port (P) qubits onto
the following modified Bell basis:

|Φ+
m〉 = M(|00〉+m|11〉), (13)

|Φ−
m〉 = M(m∗|00〉 − |11〉), (14)

|Ψ+
m〉 = M(|01〉+m|10〉), (15)

|Ψ−
m〉 = M(m∗|01〉 − |10〉), (16)

where M = 1/
√

1 + |m|2. We introduce, as will become
clear soon, a free parameter (m) in the protocol. It is a
proper manipulation of this parameter that allows Alice to
overcome the fidelity decrease due to her port qubit dis-
entanglement (|nP | < 1). Each projective measurement
implemented by Alice on qubits X and P projects
the ancillary and copy qubits to the state |Rj〉AC1C2

,
with probability Pj . Here j = {Φ+

m, Φ
−
m, Ψ

+
m, Ψ

−
m}

stands for any possible measurement result obtained
by Alice. Alice then sends Bob and Charlie her mea-
surement result (two bits). Then, both parties apply
the appropriate unitary transformation on their qubits,
{Φ+

m, Φ
−
m, Ψ

+
m, Ψ

−
m} → {I, σz , σx, σzσx}. At the end of the

protocol Bob (Charlie) ends up with the state ρ1(2),j =

TrA,C2(1)

(
|Rj〉AC1C2

〈Rj |
)
, which is obtained tracing out

all but qubit C1(2). Therefore, Bob’s (Charlie’s) fidelity
for this run of the protocol is F1(2),j = X〈φ|ρ1(2),j |φ〉X .

3 Channel efficiency

We now turn to estimate the efficiency of the protocol em-
ploying the techniques developed in reference [18]. From
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now on {n} and m are all real numbers since it can be
shown that we do not lose in generality by such assump-
tions [18]. In general the probabilities Pj and the fidelities
F1(2),j depend on α and β. Moreover, Alice can change
the values of α and β of the transferred state at will for
each run of the protocol. Therefore, in order to get α- and
β-independent results we average over many implemen-
tations of the protocol, i.e. over all possible pure state
inputs, obtaining the protocol efficiency [18]

Cpro
1(2) =

∑

j

〈PjF1(2),j〉.

In the averaging process we will need the quantities 〈|α|2〉,
〈|α|4〉, 〈|β|2〉, 〈|β|4〉 and 〈|αβ|2〉. In reference [18] they were
shown to be 〈|α|2〉 = 〈|β|2〉 = 1/2, 〈|α|4〉 = 〈|β|4〉 = 1/3,
and 〈|αβ|2〉 = 1/6. We can interpret Cpro as the average
qubit transmission rate for a given protocol choice [18].

The averaged probabilities, Bob’s average fidelities,
and his channel efficiency are:

〈PΦ+
m
〉 = 〈PΨ−

m
〉 =

A2M2

2

(
1 +

n2
Pn

2
C1
m2

4
+
n2

An
2
C1

4

+
n2

Pn
2
C2
m2

4
+
n2

An
2
C2

4
+n2

Pn
2
An

2
C1
n2

C2
m2

)
, (17)

〈PΦ−
m
〉 = 〈PΨ+

m
〉 =

A2M2

2

(
m2 +

n2
Pn

2
C1

4
+
n2

An
2
C1
m2

4

+
n2

Pn
2
C2

4
+
n2

An
2
C2
m2

4
+n2

Pn
2
An

2
C1
n2

C2

)
, (18)

〈F1,Φ+
m,Ψ−

m
PΦ+

m,Ψ−
m
〉 =

A2M2

3

(
1 +

n2
An

2
C1

8
+
n2

An
2
C2

4

+
nPnC1m

2
+
nPn

2
AnC1n

2
C2
m

2

+
n2

Pn
2
C1
m2

4
+
n2

Pn
2
C2
m2

8

+n2
Pn

2
An

2
C1
n2

C2
m2

)
, (19)

〈F1,Φ−
m,Ψ+

m
PΦ−

m,Ψ+
m
〉 =

A2M2

3

(
m2 +

n2
An

2
C1
m2

8

+
n2

An
2
C2
m2

4
+
nPnC1m

2

+
nPn

2
AnC1n

2
C2
m

2
+
n2

Pn
2
C1

4

+
n2

Pn
2
C2

8
+ n2

Pn
2
An

2
C1
n2

C2

)
, (20)

Cpro
1 =

2
3

(
1 +

1
2
F({n})
G({n})

)
, (21)

with

F({n}) = (1 + n2
P )(1 + n2

C1
)(1 + n2

An
2
C2

)c(nP )c(nC1)c(m)

−(n2
An

2
C1

+ n2
Pn

2
C2

), (22)

G({n}) = (n2
P + n2

A)(n2
C1

+ n2
C2

) + 4(1 + n2
Pn

2
An

2
C1
n2

C2
).

(23)

Here c(n) = 2n/(1+n2) is the concurrence [27] of the state
1/

√
1 + n2 (|00〉 + n|11〉). On the other hand, Charlie’s fi-

delities and his channel efficiency are simply obtained by
changing nC1 ↔ nC2 . For the standard telecloning proto-
col {n} = m = 1 and one obtains the well-known result of
〈Pj〉 = 1/4, 〈F1(2),jPj〉 = 5/24, and Cpro

1(2) = 5/6, which is
the optimal average fidelity [8].

We now begin to study each qubit’s disentanglement
effect on the channel efficiency Cpro. We investigate how
the port, ancillary and copies’ disentanglement influence
the overall channel efficiency and how we can remedy the
disentanglement effect as modelled by equation (5).

3.1 Port qubit treatment

The first qubit we treat is the port. Applying the map
giving in equation (5) only to the port qubit (i.e. nA =
nC1,2 = 1.0) we get:

Cpro
1(2) =

∑

j

〈F1(2),jPj〉 =
11
18

(
1 +

4c(m)c(nP )
11

)
. (24)

Note that for nP = m = 1 we obtain Cpro
1(2) = 5/6, the

original telecloning efficiency [8]. Moreover, noting that
for this case the channel can be written as

|ψ; {n}〉PAC =
1√

1 + n2
P

(|0〉P |φ0〉AC + nP |1〉P |φ1〉AC) ,

(25)
it is evident to see that the same treatment as in the Gen-
eralized Teleportation Protocol (GTP) [18] and the Gener-
alized Quantum State Sharing (GQSTS) [20] applies here.
By simply changing the measurement basis (adjusting a
proper m) and choosing the proper acceptable measure-
ments one can either retain unit probability of success with
low fidelity (m = 1, accepting all results), or transform the
protocol to a probabilistic one with optimal fidelity (5/6).
For example, by choosing m = nP we recover probabilisti-
cally [18,20] the noiseless telecloning protocol [8]. For this
choice of m, only |Φ−

m〉 and |Ψ+
m〉 are acceptable results

both of which furnishing the optimal fidelity for a given
run of the protocol (no need for averaging) [18,20].

Finally, we can see that the greater the channel effi-
ciency (Eq. (24)) the greater the channel global entangle-
ment. See Figure 3.

3.2 Ancillary qubit treatment

Applying the map given in equation (5) only to the ancil-
lary qubit (i.e. nP = nC1,2 = 1.0) we get

Cpro
1(2) =

∑

j

〈F1(2),jPj〉 =
11
18

(
1 +

4c(m)
11

)
. (26)

It is interesting to note that the ancillary disentanglement
(nA < 1) has no effect on the overall channel efficiency.
In other words, equation (26) does not depend on nA.
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Fig. 3. Global entanglement (black-solid), as given by equa-
tion (9), and the channel efficiency (blue-dashed), equa-
tion (24), as a function of nj = nP for c(m) = 1.

It is worth noting that equation (26) is equal to equa-
tion (24) when c(nP ) = 1, i.e., when one still has a
maximally entangled channel (E(1)

G = 1). Again we find
that the overall channel efficiency is optimal for m = 1,
namely Cpro

1(2) = 5/6.

3.3 Copy qubit treatment

The last case to consider is the one in which we apply the
map to the copies. In this case, we assume that the port
and the ancillary qubits are not affected (i.e. nP = nA =
1.0). The channel efficiency can be rewritten as

Cpro
1 = 1

2

(
1 + 2

3

(
κ(1) + κ(2)c(nC1)c(m)

))
, (27)

κ(1) =
1

1 + λ
, κ(2) =

1
1 + 1/λ

, (28)

λ =
(1 + n2

C1
)(1 + n2

C2
)

1 + n2
C1
n2

C2

. (29)

For the second copy, Cpro
2 is given by changing nC1 ↔ nC2 .

As we discuss below, equation (27) allows us to derive a
couple of interesting properties for this particular proto-
col. Firstly, let us analyze some trivial limiting cases. For
m = 1, note that when nC1 = nC2 = 1 we obtain, as it
should be, Cpro

1(2) = 5/6, the noiseless optimal limit. More-
over, when nC1 = nC2 = 0 we get Cpro

1(2) = 2/3. This value
can be understood noting that for this case the channel is
|ψ; {n}〉PAC = |0000〉PAC , i.e. we have no entanglement
whatsoever. Thus the telecloning protocol can be seen as
the usual teleportation protocol whose efficiency is at most
2/3 when we have pure but not entangled channels [18].
Furthermore, only for the case when nC1 = 1, we see that
the channel efficiency of the first copy does not depend on
nC2 , as can be seen looking at equation (29). A similar ar-
gument applies for the second copy channel efficiency. This
is remarkable and it means that the application of the map
on the second (first) copy changes the protocol efficiency
of the first (second) copy in a way that depends on the
application of the map on the first (second) copy. Finally,
when nC2 = 1 one recovers Cpro

1 = 11
18 (1 + 4

11c(m)c(nC1)),
similar to equation (24), with nP ↔ nC1 . This shows that

Fig. 4. Channel efficiencies as a function of global entangle-
ment when the ‘disentanglement’ map is applied to the port
(black-solid) and to the copies (red-dashed), as given by equa-
tions (24) and (27) (nC1 = nC2 or nA = nP ), respectively. In
all cases c(m) = 1.

the action of the map on the port qubit (nP < 1) changes
Cpro

1 in exactly the same way as when the map acts on
just the first copy (nC1 < 1). However, in contrast to the
case where the map acts only on the port qubit, we were
not able to devise a procedure by which we can increase
the fidelity of the copies, even in a probabilistic proto-
col. In other words, equating m = nC1 does not improve
the fidelity of the copies, contrary to a similar successful
strategy (m = nP ) employed for the port qubit case.

We end this section showing that the channel efficiency
is a monotonic increasing function of the global entangle-
ment, as depicted in Figure 4.

4 GTC to GTP conversion

We end this article showing how one can convert the GTC
to the GTP protocol. In other words, we want to show
how it is possible, using first local and then global uni-
tary operations, to convert the GTC channel |ψ; {n}〉PAC

(Eq. (6)) to the GTP channel |ΨGTP
nC1

〉 =
(
1/

√
1 + n2

C1

)

(|00〉 + nC1 |11〉). We want, therefore, to create a GTP
channel between Alice and copy 1 (Bob) in detriment of
copy 2 (Charlie), who will have a considerable decrease
of his channel efficiency. This can be achieved by ‘disen-
tangling’ copy 2 from Alice’s qubit and copy 1. The final
goal is to concentrate all the entanglement of the channel
between Alice and Bob.

4.1 Local unitary operations

Firstly, let us restrict ourselves to local unitary operations
(Alice’s site). If we remember that the ancillary qubit (A)
is assumed to be with Alice, she can only operate on the
port (P) and ancillary qubits (see Fig. 1). An optimal
strategy for Alice, when we set nP = nA = 1, nC2 = 0,
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and m = 1 for the measurement basis, is the application
of the following unitary operation on A and P:

Rjk(q) =

⎛

⎜⎝

1 0 0 0
0 Aq −qAq 0
0 q∗Aq Aq 0
0 0 0 1

⎞

⎟⎠ , (30)

Aq =
1√

1 + |q|2 , (31)

where j, k = P,A are the two qubits Alice acts upon. Here
Rjk is written in the basis {|00〉, |01〉, |10〉, |11〉} and it is
basically a rotation in the |01〉, |10〉 plane. The best result
(maximal channel efficiency) is achieved for the case q = 1.
This choice for q gives the channel (note the order in which
the qubits are written),

|ΨGTP
nC1/

√
2
〉PC1AC2 =

1√
1 + n2

C1
/2

×
(
|00〉 +

nC1√
2
|11〉

)
⊗|00〉. (32)

This is a GTP-like channel between P and C1 but with
nC1/

√
2 instead of nC1 , which is the cost one pays for

the inaccessibility to the copy qubits. However, the chan-
nel efficiency is still large since for nC1 = 1 we have
Cpro

1 = (6 + 2
√

2)/9 ≈ 0.981. Furthermore, we can also
implement with the above channel a probabilistic telepor-
tation protocol. This means we can have, sometimes, a
unity fidelity teleported state, i.e. a successful run of the
protocol [18,19].

Borrowing from the case of nC2 = 0 and any nC1 ,
to the case of nC1 = 1 and nC2 < 1, we can make the
same transformations as before and arrive at the following
channel efficiencies:

Cpro
1 =

6 + 2
√

2 + 5n2
C2

9 (1 + n2
C2

)
, (33)

Cpro
2 =

5 + 2
√

2nC2 + 6n2
C2

9 (1 + n2
C2

)
. (34)

Looking at equations (33) and (34) we can draw several
interesting conclusions: (i) Cpro

1 > Cpro
2 for all nC2 , which

is a consequence of the fact that Alice’s qubit is more en-
tangled with copy 1 qubit, located at Bob’s, in comparison
with copy 2 at Charlie’s; (ii) for nC2 = 1 we get Cpro

1 < 5/6
and Cpro

2 < 5/6, showing that the unitary transforma-
tion reduces the channel efficiency of the GTC protocol
when compared with the efficiency of a maximally entan-
gled GTC channel; (iii) equations (33) and (34), however,

show that for nC2 ≤
√

4
√

2−3
5 one can achieve Cpro

1 ≥ 5/6,
thus highlighting the transition point from the GTC to the
GTP scenario.

4.2 Global unitary operations

If we now allow Alice to implement global unitary oper-
ations, i.e., she has access, in addition to the port and

ancillary qubits, to at least one of the copies, she is able
to recover the GTP channel from the GTC channel via
two transformations. We also assume, from now on, that
Alice has access only to copy 1, being, thus, impossible for
her to work with copy 2.

As we did before, we first assume that nP = nA = 1,
nC2 = 0, and m = 1 for the measurement basis. With this
choice, the GTC channel reads,

|ψ; {n}〉PAC1C2
=

1√
4 + 2n2

C1

(
2|000〉+ nC1 |101〉

+nC1|011〉
)
⊗ |0〉. (35)

First Alice implements the following unitary operation on
the ancillary and copy 1 qubits, setting q = nC1/2,

Tjk(q) =

⎛

⎜⎝

Aq 0 0 qAq

0 1 0 0
0 0 1 0

−q∗Aq 0 0 Aq

⎞

⎟⎠, (36)

Aq =
1√

1 + |q|2 , (37)

where j, k are the two qubits Alice acts upon and now T
is basically a rotation in the |00〉, |11〉 plane. The resulting
state, |Ψ (1)〉 = TA,C1

(nC1
2

) |ψ; {n}〉PAC1C2
, is,

|Ψ (1)〉PAC1C2 =
1√

4 + 2n2
C1

(√
4 + n2

C1
|0000〉

+nC1|1010〉) . (38)

The second transformation Alice implements are on
the port and copy 1 qubits with q = nC1(1 −√

4 + n2
C1

)/(n2
C1

+
√

4 + n2
C1

). The final state,

|ΨGTP 〉PC1AC2 = TP,C1

⎛

⎝
nC1(1 −

√
4 + n2

C1
)

n2
C1

+
√

4 + n2
C1

⎞

⎠ |Ψ (1)〉,

is given as,

|ΨGTP 〉PC1AC2 =
1√

1 + n2
C1

(|00〉+ nC1 |11〉)⊗|00〉. (39)

This is exactly the GTP channel [19,18] we were look-
ing for. Therefore, if Alice has also access to copy 1, it is
possible to go from GTC to GTP.

Again, borrowing from the case in which nC2 = 0 and
nC1 is the free parameter, to the case of nC1 = 1 and
nC2 < 1, we can make the same transformations as before
and arrive at the following channel efficiencies:

Cpro
1 =

135 + 77n2
C2

135(1 + n2
C2

)
, (40)

Cpro
2 =

135 + (8
√

5 + 159)n2
C2

+ 24
√

15nC2

270(1 + n2
C2

)
. (41)
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Here, again, we have the following interesting results: (i)
Cpro

1 > Cpro
2 for all nC2 , reflecting the concentration of en-

tanglement between port and copy 1; (ii) for nC2 = 1 we
get Cpro

1 < 5/6 and Cpro
2 < 5/6, showing that the trans-

formations also reduce the channel efficiency of the GTC
protocol when compared with the efficiency for the max-
imally entangled GTC channel; (iii) finally, manipulating
Cpro

1 , one sees that for nC2 ≤ √
45/71 one can achieve

Cpro
1 ≥ 5/6, thus showing the transition point from the

GTC to the GTP scenario.

5 Experimental proposal

The main experimental challenge in order to implement
the GTC is the ability of Alice to apply on her qubits a
generalized Bell measurement. In other words, Alice must
project the port qubit (P) and the one to be telecloned
(X) onto one of the four generalized Bell states given in
equations (13–16). Fortunately, this can be achieved for
the following qubit encodings [28]: (i) single-photon state
and the vacuum state; (ii) a vertically and a horizontally
polarized photon state; and (iii) two coherent light states
with opposite phases. Using linear optical schemes Kim
et al. [28] have shown how one is able to implement a gen-
eralized Bell measurement for each one of the above three
possible qubit encodings. For the first two encodings, not
all generalized Bell states can be distinguished via linear
optics, although the last one allows an almost perfect dis-
crimination among the four generalized Bell states.

6 Conclusion

To conclude, we have shown that decreasing the entangle-
ment of the quantum channel needed for a perfect quan-
tum telecloning protocol results in non-trivial protocol ef-
ficiencies which depend on the specific mechanism used to
decrease its entanglement content (‘disentanglement’ pro-
cess). We have analyzed all the three possible ‘disentangle-
ment’ scenarios. Firstly, acting locally on the port qubit,
the reduction of the channel’s entanglement can be dealt
with in a probabilistic manner, similar to the approach
employed for the generalized teleportation and quantum
state sharing protocols. Here we can achieve the opti-
mal fidelity for the telecloned qubits by properly rotating
Alice’s measurement basis. Secondly, the ancillary’s disen-
tanglement has no effect on the overall average efficiency,
as expected from an ancillary. Thirdly, the copies’ disen-
tanglement cannot be counter attacked using the port’s
disentanglement approach, i.e., there is no rotation on
Alice’s measurement basis allowing, even probabilistically,
the optimal fidelity for both telecloned qubits. Finally, we
have also shown how one can convert the generalized tele-
cloning channel, either using local or global unitary oper-
ations, to the generalized teleportation channel. All these
results highlight that non-maximally pure entangled chan-
nels can also be employed to the direct implementation of

quantum telecloning, although only probabilistically. And
this suggests that a promising route for further analysis
is the study of what can be done probabilistically using
directly, i.e. without distillation protocols, non-maximally
mixed entangled channels.

G.R. thanks Fundação de Amparo à Pesquisa do Estado de
São Paulo (FAPESP) for funding this research.
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